Chem Rxs, Stoich

"The world of chemical events is like a stage on which scene after scene is enacted in a continuous succession. The players on this stage are the elements. To each of them is assigned a characteristic role, either that of supernumerary or that of an actor playing a part."

Clemens Alexander Winkler, 1897
Almost all the chemical processes which occur in nature ... take place between substances in solution."

Friedrich Wilhelm Ostwald, 1890 (Nobel Prize for Chemistry in 1909 "in recognition of his work on catalysis and for his
 investigations into the fundamental principles governing chemical equilibria and rates of reaction".)

4.9 - Acid-Base Reactions

Exam I Monday, September 20 (in one week)

quiz on Friday covering material since first quiz

you need to do the Grubbs test on your Exp 5 data and email the spreadsheet with any outliers clearly marked

Solubility Rules

Precipitation Reactions

For example: if aqueous solutions of sodium chloride and silver nitrate were mixed, the solubility table identifies silver chloride as an insoluble species so

1. balanced equation:

$$
\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

2. total ionic equation: [never break apart (s), (I), (g)]

$$
\begin{aligned}
\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})+ & \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \\
& \mathrm{AgCl}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{aligned}
$$

3. net ionic equation (contains the CHEMISTRY):

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})
$$

Statistics

H_Exp 5 (next week)

H 4-1 - Gaussian Distribution

Central Limit Theorem - random variable

H 4-6 - Grubbs Test

To determine whether a particular data point can be excluded based upon its questionable veracity, form the Grubbs statistic, G.

$$
G_{\text {calculated }}=\frac{\left|x_{\text {questionable }}-\langle x\rangle\right|}{s}
$$

If $G_{\text {calculated }}>G_{\text {table }}$ then the point can be excluded with the chosen confidence level (here 95\%). The mean and standard deviation will need to be recalculated. Hint: generally do not exclude a data point unless you are certain that an error occurred in its measurement. Never exclude more than one point. Always use a value of G of at least a 95% confidence level.

$$
\begin{aligned}
& G_{\text {calc }}<G_{\text {table }}=>\text { do not drop point } \\
& G_{\text {calc }}>G_{\text {table }}=>\text { drop point }
\end{aligned}
$$

TABLE 4-6	Critical values of \boldsymbol{G}			
for rejection of outlier				
Number of				
observations		\quad	(95 \% confidence)	
:---:	:---:			
4	1.463			
5	1.672			
6	1.822			
7	1.938			
8	2.032			
9	2.110			
10	2.176			
11	2.234			
12	2.285			
15	2.409			
20	2.557			

H 4-2 - F Test: Comparison of Standard Deviations

To compare the standard deviations of two different sets of measurements to determine if they are or are not statistically the same
n_{1} measurements, $\left\langle x_{1}\right\rangle$ mean, s_{1} standard deviation
n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation
determine

$$
F_{\text {calculated }}=\left(s_{1} / s_{2}\right)^{2} \text { where } F \geq 1
$$

$F_{\text {calc }}<F_{\text {table }}=>$ statistically the same at 95\% confidence
$F_{\text {calc }}>F_{\text {table }}=>$ statistically different

H 4-4 - Case 2 : Comparing Means

To compare the means of two different sets of measurements to determine if they are statistically the same or different
n_{1} measurements, $<x_{1}>$ mean, s_{1} standard deviation
n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation

$$
\text { if } F_{\text {calc }}<F_{\text {table }}
$$

determine: $s_{\text {pooled }}, t_{\text {calc }}$ $t_{\text {table }}=\operatorname{TINV}(0.05$, dof $)$
$t_{\text {calc }}<t_{\text {table }}=>$ stat. the same
$t_{\text {calc }}>t_{\text {table }}=>$ stat. different

$$
t_{\text {calculated }}=\frac{\left|\left\langle x_{1}\right\rangle-\left\langle x_{2}\right\rangle\right|}{s_{\text {pooled }}} \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}}
$$

H 4-4 - Case 2 : Comparing Means

To compare the means of two different sets of measurements to determine if they are statistically the same or different
n_{1} measurements, $<x_{1}>$ mean, s_{1} standard deviation
n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation

$$
\text { if } F_{\text {calc }}>F_{\text {table }}
$$

determine: dof, $t_{\text {calc }}$

$$
t_{\text {calculated }}=\frac{\left|\left\langle x_{1}\right\rangle-\left\langle x_{2}\right\rangle\right|}{\sqrt{s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}}}
$$

$$
t_{\text {table }}=\operatorname{TINV}(0.05, \mathrm{dof})
$$ EXCEL

$t_{\text {calc }}<t_{\text {table }}=>$ stat. the same
$t_{\text {calc }}>t_{\text {table }}=>$ stat. different

$$
\frac{\text { degrees of }}{\text { freedom }}=\frac{\left(s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}
$$

H 4-3 - The Meaning of 95\% Confidence

You make n measurements and report

$$
\text { confidence interval }=\langle x\rangle \pm t_{95} s / \sqrt{n}
$$

$<x>$ mean
t_{95} from t-table
s standard deviation
which => that the true mean will be found within a range of $t s / \sqrt{n}$ of your mean with a level of certainty of 95% if you were to repeat the n measurements many times (95% of the sets of n measurements would include the true mean)

Properties of Arrhenius Acids and Bases

Arrhenius acids - produce $\mathrm{H}^{+}(\mathrm{aq})$ ions upon dissolution in water

$$
\mathrm{HCl}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Arrhenius bases - produce $\mathrm{OH}^{-}(\mathrm{aq})$ ions upon dissolution in water

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

Definition works since pure water ionizes to a very small extent in a process called autoionization

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Water is both an Arrhenius acid and an Arrhenius base. A substance having both acidic and basic properties is called amphoteric.

Strong Acids and Strong Bases

seven strong acids to know
hydrochloric acid
hydrobromic acid
hydroiodic acid perchloric acid
chloric acid
sulfuric acid nitric acid

HCl
HBr
HI
HClO_{4}
HClO_{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}$ HNO_{3}
soluble strong bases to know
lithium hydroxide LiOH
sodium hydroxide $\quad \mathrm{NaOH}$
potassium hydroxide KOH
rubidium hydroxide RbOH
cesium hydroxide CsOH
barium hydroxide $\quad \mathrm{Ba}(\mathrm{OH})_{2}$

Neutralization of Arrhenius Acid with Arrhenius Base

neutralization - reaction of an Arrhenius acid with an Arrhenius base to form a salt (ionic compound not containing OH^{-}) and water; driving force is the formation of stable, low energy water

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)
$$

net ionic equation: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)$

What about ammonia?

Modified Definition of Arrhenius Acids and Bases

Arrhenius acids - increase concentration of $\mathrm{H}^{+}(\mathrm{aq})$ above that present in pure water by reacting with water

Arrhenius bases - increase concentration of $\mathrm{OH}^{-}(\mathrm{aq})$ above that present in pure water by reacting with water - for ammonia

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Broadens the applicable chemistry.

Acid and Base Anhydrides

$$
\begin{aligned}
& \mathrm{SO}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(a q) \\
& \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(I) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})
\end{aligned}
$$

to find the acid/base add enough units of $\mathrm{H}_{2} \mathrm{O}$ to the anhydride

Acid and Base Anhydrides

$$
\begin{array}{ll}
\mathrm{SO}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) & \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq}) \\
\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(I) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) & 2 \mathrm{HNO}_{3}(\mathrm{aq})-\mathrm{H}_{2} \mathrm{O}^{\prime} \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(g) \\
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s})-\mathrm{H}_{2} \mathrm{O}^{\prime} \rightarrow \mathrm{BaO}(\mathrm{~s}) & 2 \mathrm{HBrO}_{4}(\mathrm{aq})-\mathrm{H}_{2} \mathrm{O}^{\prime} \rightarrow \mathrm{Br}_{2} \mathrm{O}_{7}(g)
\end{array}
$$

to find the anhydride "subtract" enough units of $\mathrm{H}_{2} \mathrm{O}$ from the acid/base to remove all of the hydrogens

Acid and Base Anhydrides

Reactions of Acids and Bases: ACID + BASE \rightarrow SALT + WATER chemistry contained in net ionic equation (or WHY YOU NEED TO KNOW YOUR IONS)

ACIDS react with

1. bases
2. acids
salt and water ----------------------

$$
2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{BaBr}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(I)
$$

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)
$$

$$
\begin{aligned}
& 2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{BaBr}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{HBr} \rightarrow \mathrm{H}^{+}+: \ddot{\mathrm{Br}_{\mathrm{r}}^{-}} \\
& \mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{H}-\ddot{0}:
\end{aligned}
$$

Remembering the Staveture For water

$$
\mathrm{H}^{\circ 0^{\circ}}
$$

we Can Understand Its Formation by The ADDITION OF THE ACIDIC PROTON (H^{-1}) TO THE BASIC HYdROXIDE (OH-) To FORM THE STAERE mons cunard Compound (COntent bonds) $\mathrm{H}_{2} \mathrm{O}_{0}$

ACIDS react with

2. metal oxides

BASES react with

2. nonmetal oxides salt and water

$$
\begin{gathered}
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}(\mathrm{~s}) \rightarrow \\
\mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

$2 \mathrm{NaOH}(a q)+\mathrm{Cl}_{2} \mathrm{O}_{5}(g) \rightarrow$
$2 \mathrm{NaClO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}($ ($)$

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}(s) \rightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)
$$

this Reaction can be best seen By RecognizeING MID AS IONIC SO THAT OXYGEN IS RE. SENT AS THE OXIDE ANION, 0^{2-}, ANIS

$$
\ddot{O}:^{2-}+2 H^{+} \rightarrow H-\ddot{O}-H
$$

ACIDS react with
3. carbonates
hydrogen carbonates

$$
\begin{aligned}
& \mathrm{HNO}_{3}(a q)+\mathrm{NaHCO}_{3}(s) \rightarrow \\
& \mathrm{CO}_{2}(g)+\mathrm{NaNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I)
\end{aligned}
$$

BASES react with 3. ammonium salts
--------------------- salt and water ---------------------- $+\mathrm{NH}_{3}(g)$

$$
\begin{aligned}
& 2 \mathrm{KOH}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \\
& \quad 2 \mathrm{NH}_{3}(g)+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(I)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \\
& \mathrm{CO}_{2}(g)+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)
\end{aligned}
$$

also sulfites and hydrogen sulfites

$$
\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(I)
$$

$$
2 \mathrm{KOH}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(I)
$$

As before, لunis Structures Elveidate The Reaction bhere twe staong Bnse OH^{-}Paweks A PROTON OFF NHY: TO MANEE WATER, LEAVING Ammonia Beaind :

ganerranly If a reaction can mave water It Does.

Stoichiometry of Acid-Base Titrations

balanced equation
concentrations
end-point = equivalence point (end-point: indicator, potentiometric)
EX 10. A 25.0 mL sample of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ requires 28.33 mL of 0.953 M NaOH to reach the phenolphthalein end-point. What is the concentration of acetic acid?

$$
\begin{aligned}
& \underset{25 \mathrm{~mL}}{\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})}+\underset{\substack{28.33 \mathrm{~mL} \\
0.953 \mathrm{M}}}{\mathrm{NaOH}(\mathrm{aq})} \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(I) \\
& n_{\mathrm{A}}=(\mathrm{VM})_{\mathrm{A}}=n_{\mathrm{B}}=(\mathrm{VM})_{\mathrm{B}}
\end{aligned}
$$

Stoichiometry of Acid-Base Titrations

balanced equation
concentrations
end-point = equivalence point (end-point: indicator, potentiometric)
EX 10. A 25.0 mL sample of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ requires 28.33 mL of 0.953 M NaOH to reach the phenolphthalein end-point. What is the concentration of acetic acid?

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\text { (}) \\
& 25 \mathrm{~mL} \quad 28.33 \mathrm{~mL} \\
& 0.953 \text { M } \\
& n_{\mathrm{A}}=(\mathrm{VM})_{\mathrm{A}}=n_{\mathrm{B}}=(V \mathrm{M})_{\mathrm{B}}=> \\
& M_{A}=(V M)_{B} / V_{A}=(28.33)(0.953) / 25.0=1.0799 \Rightarrow 1.08 \mathrm{M}
\end{aligned}
$$

